brickschema Documentation

Gabe Fierro

Jun 09, 2021

1 Installation

2 Table of Contents

2.1 Quick Feature Reference
22 Inference
23 Validate

2.4 Extensions and Alignments

3 Indices and tables
Python Module Index

Index

25 BrickORM
2.6 brick_validate Command
2.7 brickschemapackage

CONTENTS

brickschema Documentation

The brickschema package makes it easy to get started with Brick and Python. Among the features it provides are:
* management and querying of Brick models
* simple OWL-RL, SHACL and other inference
* Haystack and VBIS integration:
— convert Haystack models to Brick

— add VBIS tags to a Brick model, or get Brick types from VBIS tags

import brickschema

creates a new rdflib.Graph with a recent version of the Brick ontology
preloaded.

g = brickschema.Graph (load_brick=True)

OR use the absolute latest Brick:

g = brickschema.Graph (load _brick_nightly=True)

OR create from an existing model

g = brickschema.Graph (load_brick=True) .from haystack(...)

load in data files from your file system
g.load_file("mbuilding.ttl")

...or by URL (using rdflib)

g.parse ("https://brickschema.org/ttl/soda_brick.ttl", format="ttl")
perform reasoning on the graph (edits in-place)

g.expand (profile="owlrl")

g.expand (profile="tag") # infers Brick classes from Brick tags

validate your Brick graph against built-in shapes (or add your own)
valid, _, resultsText = g.validate()
if not wvalid:

print ("Graph is not wvalid!")

print (resultsText)

perform SPARQL queries on the graph
res = g.query("""SELECT ?afs ?afsp ?vav WHERE {

?afs a brick:Air_Flow_Sensor
2afsp a brick:Air_Flow_Setpoint
?afs brick:isPointOf ?vav

2afsp brick:isPointOf ?vav

?vav a brick:VAV

}ll"ll)
for row in res:
print (row)

start a blocking web server with an interface for performing
reasoning + querying functions

.serve ("localhost:8080")

now visit in http://localhost:8080

H QW W

CONTENTS 1

brickschema Documentation

2 CONTENTS

CHAPTER
ONE

INSTALLATION

The brickschema package requires Python >= 3.6. It can be installed with pip:

pip install brickschema

brickschema Documentation

4 Chapter 1. Installation

CHAPTER
TWO

2.1 Quick Feature Reference

2.1.1 Web Interface

TABLE OF CONTENTS

brickschema incorporates a simple web server that makes it easy to apply inference and execute queries on Brick
models. Call . serve () on a Graph object to start the webserver:

from brickschema import Graph
g = Graph (load_brick=True)
load example Brick model

g.parse ("https://brickschema.org/ttl/soda_brick.ttl")

g.serve ("http://localhost:8080")

optional address argument

Apply OWLRL Reasoning Apply RDFS Reasoning Apply SHACL Reasoning

Query +
€ | http://localhost:8080/query

1+ PREFIX unit: <http://qudt.org/vocab/unit/>
PREFIX quantitykind: <http://qudt.org/vocab/quantitykind/>
PREFIX qudt: <http://qudt.org/schema/qudt/>
PREFIX sh: <http://ww.w3.org/ns/shacls>
PREFIX Owl: <http://wew.w3.0rg/2002/07/owli>
PREFIX brick: <https://brickschema.org/schema/1.1/Brick#>
PREFIX rdf: <http://ww.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/61/rdf-schena#>

« SELECT * WHERE {

10 ?sensor a brick:Temperature Sensor .

11 ?sensor brick:isPoint0f ?vav .

12 ?vav a brick:VAV .

13} LIMIT 10

PN

M Table = Response 10 results in 0.106 seconds
vav

1 hitps://bri g 1.0 G R310>
2 https:, g 1.0 g examp C500A>
3 http: 1.0. >xampl R179>
4 https:, 1.0. >xamp R347>
5 <https://br r 1.0 example R288>
6 <https:/br 1.0.2 g examp C700B>
7 <https://br 1.0.2 g_example#vav R465H>
8 <htips:/br 1.0.2 g_example#vav_R537>
9 http: rg/schema/1.0.2 R327>

Apply Brick Tag Reasoning

Apply VBIS Reasoning

<https://brickschema.org/schemay1.0.2/building
<https://brickschema.org/schema/1.0.2/building
<https://brickschema.org/schema/1.0.2/building
<https://brickschema.org/schema/1.0.2/building
<https://brickschema.org/schema/1.0.2/building

<https://brickschema.org/schema/1.0.2/building

<https://brickschema.org/schema/1.0.2/building_

Filter query results

sensor
example#temp sensor hvac
example#temp sensor hvac
example#temp sensor hvac
example#temp sensor hvac
examples#temp sensor hvac
example#temp sensor hvac

example#temp

zone

zone

zone

zone

zone

zone

R310>

C500A>

R179>

R347>

R288>

C700B>

sensor_hvac zone R465H>

<https://brickschema.org/schema/1.0.2/building_example#temp_sensor_hvac zone R537>

<https://brickschema.org/schema/1.0.2/building_example#temp_sensor_hvac_zone R327>

<p

Pagesize: 50 v & @

brickschema Documentation

2.1.2 Brick Inference
Inference is the process of materializing all of the facts implied about a Brick model given the definitions in the Brick
ontology. This process performs, among other things:
¢ adding in “inverse” edges:
— Example: for all brick: feeds, add the corresponding brick: isFedby
 annotating instances of classes with their Brick tags:

— Example: for all instances of brick:Air_Temperature_Sensor, add the mapped tags:
tag:Air, tag:Temperature, tag:Sensor and tag:Point

* annotating instances of classes with their measured substances and quantities:

— Example: for all instances of brick:Air_ Temperature_Sensor, associate the brick:Air
substance and brick: Temperature quantity

¢ inferring which classes are implied by the available tags:

— Example: all entities with the tag:Air, tag: Temperature, tag: Sensor and tag:Point
tags will be instantiated as members of the brick:Air_ Temperature_Sensor class

The set of rules applied to the Brick model are defined formally here.

To apply the default inference process to your Brick model, use the . expand () method on the Graph.

from brickschema import Graph

bldg = Graph(load_brick=True)
bldg.load_file('mybuilding.ttl")
print (f"Before: len(bldg) triples")
bldg.expand ("owlrl™)

print (f"After: len (bldg) triples")

2.1.3 Haystack Inference

Requires a JSON export of a Haystack model First, export your Haystack model as JSON; we are using the public
reference model carytown.json. Then you can use this package as follows:

import json
from brickschema import Graph
model = json.load(open ("haystack-export.json"))
g = Graph(load_brick=True) .from_haystack ("http://project-haystack.org/carytown#",
—model)
points = g.query ("""SELECT ?point ?type WHERE ({
?point rdf:type/rdfs:subClassOfx brick:Point
?point rdf:type ?type
P
print (points)

6 Chapter 2. Table of Contents

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

brickschema Documentation

2.1.4 SQL ORM

from brickschema.graph import Graph

from brickschema.namespaces import BRICK

from brickschema.orm import SQLORM, Location, Equipment, Point
loads in default Brick ontology

g = Graph (load_brick=True)

load in our model

g.load_file("test.ttl")

put the ORM in a SQLite database file called "brick_test.db"
orm = SQLORM (g, connection_string="sqglite:///brick_test.db")

get the points for each equipment

for equip in orm.session.query (Equipment) :

print (f"Equpiment {equip.name/ is a {equip.type/ with {len(equip.points)/ points")
for point in equip.points:
print (£" Point {point.name/ has type {point.type ")
filter for a given name or type
hvac_zones = orm.session.query (Location)\
.filter (Location.type==BRICK.HVAC_Zone) \
.all()
print (f"Model has {len(hvac_zones) HVAC Zones")

2.2 Inference

brickschema makes it easier to employ reasoning on your graphs. Simply call the expand method on the Graph
object with one of the following profiles:

e "rdfs": RDFS reasoning

e "owlrl": OWL-RL reasoning (using 1 of 3 implementations below)
e "ybis": add VBIS tags to Brick entities

* "shacl": perform advanced SHACL reasoning

By default, expand will simplify the graph. Simplification is the process by which axiomatic, redundant or other
“stray” triples are removed from the graph that may be added by a reasoner. This includes items like the following: -
triples that assert an entity to be an instance of owl: Thing or owl :Nothing - triples that assert an entity to be a
blank node - triples that assert an entity to be the same as itself

To turn simplification off, simply add simplify=False when calling expand.

from brickschema import Graph

g = Graph (load_brick=True)
g.load_file("test.ttl")

g.expand (profile="owlrl")

print (f"Inferred graph has {len(qg) triples")

Brickschema also supports inference “schedules”, where different inference regimes can be applied to a graph one
after another. Specify a schedule by using + to join the profiles in the call to expand.

from brickschema import Graph

g = Graph (load_brick=True)
g.load_file("test.ttl")

(continues on next page)

2.2. Inference 7

brickschema Documentation

(continued from previous page)

apply owlrl, shacl, vbis, then shacl again
g.expand (profile="owlrl+shacl+vbis+shacl")
print (f"Inferred graph has {len(g)} triples")

The package will automatically use the fastest available reasoning implementation for your system:
* reasonable (fastest, Linux-only for now): pip install brickschema[reasonable]
¢ Allegro (next-fastest, requires Docker): pip install brickschemal[allegro]
e OWLRL (default, native Python implementation): pip install brickschema

To use a specific reasoner, specify "reasonable", "allegrograph" or "owlr1" as the value for the backend
argument to graph . expand.

2.3 Validate

The module utilizes the pySHACL package to validate a building ontology against the Brick Schema, its default
constraints (shapes) and user provided shapes.

Please read Shapes Contraint Language (SHACL) to see how it is used to validate RDF graphs against a set of con-
straints.

2.3.1 Example

from brickschema import Graph

g = Graph (load_brick=True)
g.load_file('myBuilding.ttl")
valid, _, report = g.validate()
print (f"Graph is wvalid? {valid}")
if not wvalid:

print (report)

validating using externally-defined shapes

external = Graph()
external.load_file("other_ shapes.ttl")
valid, _, report = g.validate (shape_graphs=[externall)

print (f"Graph is valid? {valid}")
if not valid:
print (report)

2.3.2 Sample default shapes (in BrickShape.ttl)

brick:hasLocation's object must be of brick:Location type
bsh:hasLocationRangeShape a sh:NodeShape ;
sh:property [sh:class brick:Location ;
sh:message "Property hasLocation has object with incorrect type"
sh:path brick:hasLocation] ;
sh:targetSubjectsOf brick:hasLocation

brick:isLocationOf's subject must be of brick:Location type

(continues on next page)

8 Chapter 2. Table of Contents

https://github.com/RDFLib/pySHACL
https://www.w3.org/TR/shacl

brickschema Documentation

(continued from previous page)

bsh:isLocationOfDomainShape a sh:NodeShape ;
sh:class brick:Location ;
sh:message "Property isLocationOf has subject with incorrect type"
sh:targetSubjectsOf brick:isLocationOf

2.4 Extensions and Alighments

The module makes it simple to list and load in extensions to the Brick schema, in addition to the alignments between
Brick and other ontologies. These extensions are distributed as Turtle files on the Brick GitHub repository, but they
are also pre-loaded into the brickschema module.

2.4.1 Listing and Loading Extensions

Extensions provide additional class definitions, rules and other augmentations to the Brick ontology.

from brickschema import Graph

g = Graph()

returns a list of extensions
g.get_extensions ()

=> ['shacl_tag _inference']

loads the contents of the extension into the graph
.load_extension ('shacl_tag_inference')

classes from the tags associated with entities

#
g
with this particular extension, you can now infer Brick
#
g.expand ("shacl™)

2.4.2 Listing and Loading Alignments

Alignments define the nature of Brick’s relationship to other RDF-based ontologies. For example, the Building Topol-
ogy Ontology defines several location classes that are similar to Brick’s; the alignment between BOT and Brick allows
graphs defined in one language to be understood in the other.

Several Brick alignments are packaged with the brickschema module. These can be listed and dynamically loaded into
a graph

from brickschema import Graph

g = Graph()

returns a list of alignments
g.get_alignments ()

=> ['VBIS', 'REC', 'BOT']

loads the contents of the alignment file into the graph
g.load_alignment ('BOT")

good idea to run a reasoner after loading in the extension
so that the implied information is filled out

g.expand ("owlrl™)

2.4. Extensions and Alignments 9

https://github.com/BrickSchema/Brick/

brickschema Documentation

2.5 Brick ORM

Currently, the ORM models Locations, Points and Equipment and the basic relationships between them.

Please see the SQLAIchemy docs for detailed information on how to interact with the ORM. use the orm. session
instance variable to interact with the ORM connection.

See querying docs for how to use the SQLalchemy querying mechanisms

2.5.1 Example

from brickschema.graph import Graph

from brickschema.namespaces import BRICK

from brickschema.orm import SQLORM, Location, Equipment, Point
loads in default Brick ontology

g = Graph (load_brick=True)

load in our model

g.load_file("test.ttl")

put the ORM in a SQLite database file called "brick_ test.db"
orm = SQLORM (g, connection_string="sqglite:///brick_test.db")

get the points for each equipment

for equip in orm.session.query (Equipment) :

print (f"Equpiment {equip.name/ is a {equip.type/ with {len(equip.points)/ points")
for point in equip.points:
print (£" Point {point.name/ has type {point.type /")
filter for a given name or type
hvac_zones = orm.session.query (Location)\
.filter (Location.type==BRICK.HVAC_Zone) \
.all()
print (f"Model has {len (hvac_zones) HVAC Zones")

2.6 brick validate Command

The brick_validate command is similar to the pyshacl command with simplied command line arguments to validate a
building ontology against the Brick Schema and Shapes Contraint Language (SHACL) contraints made for it.

When the validation results show contraint violations, the brick_validate command provides extra information asso-
ciated with the violations in addition to the violation report by pyshacl. The extra infomation may be the offending
triple or violation hint.

If no extra information is given for a reported violation, it means there is no appropriate handler for the perticular
violation yet. If you think extra info is needed for the particular case, please open an issue with the brickschema
module.

10 Chapter 2. Table of Contents

https://docs.sqlalchemy.org/en/13/
https://docs.sqlalchemy.org/en/13/orm/tutorial.html#querying
https://github.com/RDFLib/pySHACL
https://www.w3.org/TR/shacl
https://github.com/BrickSchema/py-brickschema/issues

brickschema Documentation

2.6.1 Example

validate a building against the default shapes and extra shapes created by the uer

brick_validate myBuilding.ttl -s extraShapes.ttl

2.6.2 Sample output

Constraint violation:
[] a sh:ValidationResult ;
sh:focusNode bldg:VAV2-3 ;
sh:resultMessage "Must have at least 1 hasPoint property"
sh:resultPath brick:hasPoint ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent sh:MinCountConstraintComponent ;
sh:sourceShape [sh:message "Must have at least 1 hasPoint property"
sh:minCount 1 ;
sh:path brick:hasPoint]
Violation hint (subject predicate cause):
bldg:VAV2-3 brick:hasPoint "sh:minCount 1"

Constraint violation:
[] a sh:ValidationResult ;
sh:focusNode bldg:VAV2-4.DPR ;
sh:resultMessage "Property hasPoint has object with incorrect type"
sh:resultPath brick:hasPoint ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent sh:ClassConstraintComponent ;
sh:sourceShape [sh:class brick:Point ;
sh:message "Property hasPoint has object with incorrect type"
sh:path brick:hasPoint] ;
sh:value bldg:Room—410
Offending triple:
bldg:VAV2-4.DPR brick:hasPoint bldg:Room-410

2.7 brickschema package

2.7.1 Subpackages
2.7.2 Submodules

2.7.3 brickschema.graph module

The graph module provides a wrapper class + convenience methods for building and querying a Brick graph

class brickschema.graph.Graph (*args, load_brick=False, load_brick_nightly=False,

brick_version="1.2", **kwargs)
Bases: rdflib.graph.Graph

add (*triples)
Adds triples to the graph. Triples should be 3-tuples of rdflib.Nodes

2.7. brickschema package

11

brickschema Documentation

If the last item of a triple is a list/tuple of length-2 lists/tuples, then this method will substitute a blank node
as the object of the original triple, add the new triples, and add as many triples as length-2 items in the list
with the blank node as the subject and the item[0] and item[1] as the predicate and object, respectively.

For example, calling add((X, Y, [(A,B), (C,D)])) produces the following triples:
XY _bl. blAB. _blCD.

or, in turtle:
XY[AB;CD;
].

expand (profile=None, backend=None, simplify=True)
Expands the current graph with the inferred triples under the given entailment regime and with the given
backend. Possible profiles are: - ‘rdfs’: runs RDFS rules - ‘owlr]’: runs full OWLRL reasoning - ‘vbis’:
adds VBIS tags - ‘shacl’: does SHACL-AF reasoning (including tag inference, if the extension is loaded)

Possible backends are: - ‘reasonable’: default, fastest backend - ‘allegrograph’: uses Docker to interface
with allegrograph - ‘owlr]’: native-Python implementation

Not all backend work with all profiles. In that case, brickschema will use the fastest appropriate backend
in order to perform the requested inference.

To perform more than one kind of inference in sequence, use ‘+° to join the profiles:

import brickschema g = brickschema.Graph() g.expand(profile="rdfs+shacl’) # performs RDFS
inference, then SHACL-AF inference g.expand(profile="shacl+rdfs’) # performs SHACL-AF in-
ference, then RDFS inference

TODO: currently nothing is cached between expansions

from_haystack (namespace, model)
Adds to the graph the Brick triples inferred from the given Haystack model. The model should be a Python

dictionary produced from the Haystack JSON export
Parameters model (dict)— a Haystack model

from triples (triples)
Creates a graph from the given list of triples

Parameters triples (1ist of rdflib.Node) - triples to add to the graph

get_alignments ()
Returns a list of Brick alignments

This currently just lists the alignments already loaded into brickschema, but may in the future pull a list of
alignments off of an online resolver

get_extensions ()
Returns a list of Brick extensions

This currently just lists the extensions already loaded into brickschema, but may in the future pull a list of
extensions off of an online resolver

get_most_specific_class (classlist)
Given a list of classes (rdflib.URIRefs), return the ‘most specific’ classes This is a subset of the provided
list, containing classes that are not subclasses of anything else in the list. Uses the class definitions in the
graph to perform this task

Parameters classlist (1ist of rdflib.URIRef) - listof classes

Returns list of specific classes

12 Chapter 2. Table of Contents

brickschema Documentation

Return type classlist (list of rdflib.URIRef)

load_alignment (alignment_name)
Loads the given alignment into the current graph by name. Use get_alignments() to get a list of alignments

load_extension (extension_name)
Loads the given extension into the current graph by name. Use get_extensions() to get a list of extensions

load_f£file (filename=None, source=None)
Imports the triples contained in the indicated file into the graph

Parameters
e filename (str) —relative or absolute path to the file
* source (file) - file-like object

property nodes
Returns all nodes in the graph

Returns nodes in the graph
Return type nodes (list of rdflib.URIRef)

rebuild_tag_lookup (brick_file=None)
Rebuilds the internal tag lookup dictionary used for Brick tag->class inference. This is broken out as its
own method because it is potentially an expensive operation.

serve (address='127.0.0.1:8080")
Start web server offering SPARQL queries and 1-click reasoning capabilities

Parameters address (str)— <host>:<port> of the web server

simplify ()
Removes redundant and axiomatic triples and other detritus that is produced as a side effect of reasoning.

Simplification consists of the following steps: - remove all “a owl:Thing”, “a owl:Nothing” triples - remove
all “a <blank node” triples - remove all “X owl:sameAs Y triples

validate (shape_graphs=None, default_brick_shapes=True)
Validates the graph using the shapes embedded w/n the graph. Optionally loads in normative Brick shapes
and externally defined shapes

Parameters

* shape_graphs (list of rdflib.Graph or brickschema.graph.
Graph) — merges these graphs and includes them in the validation

* default_brick_shapes (bool) — if True, loads in the default Brick shapes pack-
aged with brickschema

Returns (conforms, resultsGraph, resultsText) from pyshacl

2.7.4 brickschema.inference module

class brickschema.inference.HaystackInferenceSession (namespace)
Bases: brickschema.inference.TaglnferenceSession

Wraps TagInferenceSession to provide inference of a Brick model from a Haystack model. The haystack model
is expected to be encoded as a dictionary with the keys “cols” and “rows”; I believe this is a standard Haystack
JSON export.

infer entity (tagset, identifier=None, equip_ref=None)
Produces the Brick triples representing the given Haystack tag set

2.7. brickschema package 13

brickschema Documentation

Parameters
* tagset (1ist of str)-—alistof tags representing a Haystack entity
* equip_ref (str)—reference to an equipment if one exists
Keyword Arguments
* identifier (str)—if provided, use this identifier for the entity,
* generate a random string. (otherwise,)—

infer_model (model)
Produces the inferred Brick model from the given Haystack model :param model: a Haystack model :type
model: dict

Returns
a Graph object containing the inferred triples in addition to the regular graph
Return type graph (brickschema.graph.Graph)

class brickschema.inference.OWLRLAllegroInferenceSession
Bases: object

Provides methods and an inferface for producing the deductive closure of a graph under OWL-RL semantics.
WARNING this may take a long time

Uses the Allegrograph reasoning implementation

expand (graph)
Applies OWLRL reasoning from the Python owlrl library to the graph

Parameters graph (brickschema.graph.Graph)— a Graph object containing triples

class brickschema.inference.OWLRLNaiveInferenceSession
Bases: object

Provides methods and an inferface for producing the deductive closure of a graph under OWL-RL semantics.
WARNING this may take a long time

expand (graph)
Applies OWLRL reasoning from the Python owlrl library to the graph

Parameters graph (brickschema.graph.Graph) — a Graph object containing triples

class brickschema.inference.OWLRLReasonableInferenceSession
Bases: object

Provides methods and an inferface for producing the deductive closure of a graph under OWL-RL semantics.
WARNING this may take a long time

expand (graph)
Applies OWLRL reasoning from the Python reasonable library to the graph

Parameters graph (brickschema.graph.Graph) —a Graph object containing triples

class brickschema.inference.TagInferenceSession (load_brick=True, brick_version="'1.2',
rebuild_tag_lookup=False, approxi-

mate=False, brick_file=None)
Bases: object

Provides methods and an interface for inferring Brick classes from sets of Brick tags. If you want to work with
non-Brick tags, you will need to use a wrapper class (see HaystackInferenceSession)

14 Chapter 2. Table of Contents

brickschema Documentation

expand (graph)
Infers the Brick class for entities with tags; tags are indicated by the brick:hasTag relationship. :param
graph: a Graph object containing triples :type graph: brickschema.graph.Graph

lookup_tagset (ragset)
Returns the Brick classes and tagsets that are supersets OR subsets of the given tagsets

Parameters tagset (1ist of str)-—alistof tags

most_1likely_ tagsets (orig_s, num=-1)
Returns the list of likely classes for a given set of tags, as well as the list of tags that were ‘leftover’, i.e.

not used in the inference of a class
Parameters
* tagset (1ist of str)-—alistof tags
* num (int)— number of likely tagsets to be returned; -1 returns all

Returns a 2-element tuple containing (1) most_likely_classes (list of str): list of Brick classes
and (2) leftover (set of str): list of tags not used

Return type results (tuple)

class brickschema.inference.VBISTagInferenceSession (alignment_file=None,
master_list_file=None,
brick_version="1.2")
Bases: object

Add appropriate VBIS tag annotations to the entities inside the provided Brick model
Algorithm: - get all Equipment entities in the Brick model (VBIs currently only deals w/ equip)

Parameters

* alignment_file (str) — use the given Brick/VBIS alignment file. Defaults to a pre-
packaged version.

* master_list_file (str) — use the given VBIS tag master list. Defaults to a pre-
packaged version.

* brick_version (string)-the MAJOR.MINOR version of the Brick ontology to load
into the graph. Only takes effect for the load_brick argument

Returns A VBISTaglnferenceSession object
expand (graph)
Parameters graph (brickschema.graph.Graph) —a Graph object containing triples

lookup_brick_class (vbistag)
Returns all Brick classes that are appropriate for the given VBIS tag

Parameters vbistag (str)—the VBIS tag that we want to retrieve Brick classes for. Pattern
search is not supported yet

Returns list of the Brick classes that match the VBIS tag
Return type brick_classes (list of rdflib.URIRef)

2.7. brickschema package 15

brickschema Documentation

2.7.5 brickschema.namespaces module
The namespaces module provides pointers to standard Brick namespaces and related ontology namespaces wrapper
class and convenience methods for a Brick graph

brickschema.namespaces.bind_prefixes (graph, brick_version="'1.2")
Associate common prefixes with the graph

2.7.6 brickschema.orm module

ORM for Brick

class brickschema.orm.Equipment (**kwargs)
Bases: sglalchemy.orm.decl_api.Base

SQLAIchemy ORM class for BRICK.Equipment; see SQLORM class for usage
location

location_id

name

points

type

class brickschema.orm.Location (**kwargs)
Bases: sglalchemy.orm.decl_api.Base

SQLAIchemy ORM class for BRICK.Location; see SQLORM class for usage
equipment

name

points

type

class brickschema.orm.Point (**kwargs)
Bases: sglalchemy.orm.decl_api.Base

SQLAIchemy ORM class for BRICK.Point; see SQLORM class for usage
equipment

equipment_id

location

location_id

name

type

class brickschema.orm.SQLORM (graph, connection_string="sqlite://brick_orm.db")
Bases: object

A SQLAIchemy-based ORM for Brick models.

Currently, the ORM models Locations, Points and Equipment and the basic relationships between them.

16 Chapter 2. Table of Contents

brickschema Documentation

2.7.7 brickschema.tagmap module
brickschema.tagmap.tagmap = {'active': ['real'], 'ahu': ['AHU'], 'airhandlingequip': [']
get values for:

ahuZoneDeliveryType AHU airCooling Air airVolumeAdjustabilityType Air chilledBeam Chilled chilledBeam-
Zone Chilled chilledWaterCooling Chilled chillerMechanismType Chiller condenserClosedLoop Condenser
condenserCooling Condenser condenserLoopType Condenser condenserOpenLoop Condenser diverting Direc-
tion

2.7.8 brickschema.validate module
The validate module implements a wrapper of pySHACL to validate an ontology graph against the default Brick
Schema constraints (called shapes) and user-defined shapes.

class brickschema.validate.Validator (useBrickSchema=True, useDefaultShapes=True,

brick_version="'1.2")
Bases: object

Validates a data graph against Brick Schema and basic SHACL constraints for Brick. Allows extra constraints
specific to the user’s ontology.

class Result (conforms, violationGraphs, textOutput)
Bases: object

The type of returned object by validate() method

validate (data_graph, shacl_graphs=[], ont_graphs=[], inference="rdfs’', abort_on_error=False, ad-
vanced=True, meta_shacl=True, debug=False)
Validates data_graph against shacl_graph and ont_graph.

Parameters
* shacl_graphs — extra shape graphs in additon to BrickShape.ttl
* ont_graphs — extra ontology graphs in addtion to Brick.ttl

Returns object of Result class (conforms, violationGraphs, textOutput)

2.7.9 brickschema.web module

Brickschema web module. This embeds a Flask webserver which provides a local web server with: - SPARQL
interpreter + query result visualization - buttons to perform inference

TODO: - implement https://www.w3.org/TR/sparql1 1-protocol/ on /query

class brickschema.web.Server (graph)
Bases: object

apply_reasoning (profile)
home ()

query ()
start (address='localhost:8080")

2.7. brickschema package 17

https://github.com/RDFLib/pySHACL
https://www.w3.org/TR/sparql11-protocol/

brickschema Documentation

2.7.10 Module contents

Python package brickschema provides a set of tools, utilities and interfaces for working with, developing and interact-
ing with Brick models.

18 Chapter 2. Table of Contents

CHAPTER
THREE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

19

brickschema Documentation

20 Chapter 3. Indices and tables

b

brickschema,
brickschema.
brickschema.
brickschema.
brickschema.
brickschema.
brickschema.
brickschema.

18

graph, 11
inference, 13
namespaces, 16
orm, 16
tagmap, 17
validate, 17
web, 17

PYTHON MODULE INDEX

21

brickschema Documentation

22 Python Module Index

INDEX

A method), 12
add () (brickschema.graph.Graph method), 11 get_extensions () (brickschema.graph.Graph
apply_reasoning () (brickschema.web.Server method), 12
method), 17 get_most_specific_class()
(brickschema.graph.Graph method), 12
B Graph (class in brickschema.graph), 11
bind_prefixes () (in module H

brickschema.namespaces), 16
brickschema (module), 18
brickschema.graph (module), 11
brickschema.inference (module), 13
brickschema.namespaces (module), 16 |
brickschema.orm (module), 16
brickschema.tagmap (module), 17

HaystackInferenceSession (class in
brickschema.inference), 13
home () (brickschema.web.Server method), 17

infer_entity () (brickschema.inference.HaystackInferenceSession

brickschema.validate (module), 17 method), 13
)) ’ infer_model () (brickschema.inference.HaystackInferenceSession

brickschema.web (module), 17 method), 14

E L

equipment (brickschema.orm.Location attribute), 16 load_alignment () (brickschema.graph.Graph
equipment (brickschema.orm.Point attribute), 16 - method), 13

Equipment (class m brick schema.orm.) . 16 . load_extension () (brickschema.graph.Graph
equipment_id (brickschema.orm.Point attribute), 16 method), 13

expand () (br{'ckschema..graph.Graph method), 12 load _file () (brickschema.graph.Graph method), 13
expand () (brickschema.inference. OWLRLAllegrolnferenca.%eésé{gqon (brickschema.orm.Equipment attribute), 16

metho.d), 14 . . location (brickschema.orm.Point attribute), 16
expand () (brlckschema.mference.OWLRLNalveInference%gagg% ion (class in brickschema.orm), 16

metho'd), 14 . location_id (brickschema.orm.Equipment attribute),
expand () (brickschema.inference. OWLRLReasonableInferenceSeSSl%L

methoc.i), 14) . location_id (brickschema.orm.Point attribute), 16
expand () (brickschema.inference.TaglnferenceSession lookup_brick_class ()

metho.d), 14 . . (brickschema.inference. VBISTagInferenceSession
expand () (brickschema.inference. VBISTaglnferenceSession method), 15

method), 15 lookup_tagset () (brickschema.inference.TagInferenceSession
F method), 15
from_haystack () (brickschema.graph.Graph M

method), 12 ‘ most_likely_tagsets ()
from_triples () (brickschema.graph.Graph (brickschema.inference.TaglnferenceSession

method), 12 method), 15
G N
get_alignments () (brickschema.graph.Graph name (brickschema.orm.Equipment attribute), 16

23

brickschema Documentation

name (brickschema.orm.Location attribute), 16
name (brickschema.orm.Point attribute), 16
nodes () (brickschema.graph.Graph property), 13

O

OWLRLAllegroInferenceSession (class in
brickschema.inference), 14

OWLRLNaiveInferenceSession (class in
brickschema.inference), 14

OWLRLReasonableInferenceSession (class in
brickschema.inference), 14

P

Point (class in brickschema.orm), 16
points (brickschema.orm.Equipment attribute), 16
points (brickschema.orm.Location attribute), 16

Q

query () (brickschema.web.Server method), 17

R

rebuild_tag_lookup ()
(brickschema.graph.Graph method), 13

S

serve () (brickschema.graph.Graph method), 13
Server (class in brickschema.web), 17

simplify () (brickschema.graph.Graph method), 13
SQLORM (class in brickschema.orm), 16

start () (brickschema.web.Server method), 17

T

TagInferenceSession (class in
brickschema.inference), 14

tagmap (in module brickschema.tagmap), 17

type (brickschema.orm.Equipment attribute), 16

type (brickschema.orm.Location attribute), 16

type (brickschema.orm.Point attribute), 16

\Y

validate () (brickschema.graph.Graph method), 13

validate () (brickschema.validate.Validator method),
17

Validator (class in brickschema.validate), 17

Validator.Result (class in brickschema.validate),
17

VBISTagInferenceSession (class in
brickschema.inference), 15

24

Index

	Installation
	Table of Contents
	Quick Feature Reference
	Inference
	Validate
	Extensions and Alignments
	Brick ORM
	brick_validate Command
	brickschema package

	Indices and tables
	Python Module Index
	Index

